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1 MOTIVATION AND BACKGROUND

1.1 Collectives

Many systems of self-interested agents have an associated performance criterion that rates the

dynamic behavior of the overall system. This paper presents an introduction to the science

of such systems. Formally, this paper concerns collectives, which are defined as any system

having the following two characteristics: First, the system must contain one or more agents

each of which we view as trying to maximize an associated private utility. Second, the

system must have an associated world utility function that rates the possible behaviors

of that overall system [38, 39, 40, 37, 28, 38]. In practice collectives are often very large,

distributed, and support little if any centralized communication and control, although those

characteristics are not part of their formal definition.

A naturally occurring example of a collective is a human economy. One can identify the

agents and their private utilities as the human individuals in the economy and the associated

personal rewards they are each trying to maximize. One could then identify the world utility

as the time average of the gross domestic product. (“World utility” per se is not a construction

internal to a human economy, but rather something defined from the outside.) To achieve high

world utility it is necessary to avoid having the agents work at cross-purposes lest phenomena

like liquidity traps or the Tragedy of the Commons (TOC) occur, in which agents’ individually

pursuing their private utilities lowers world utility [10]. The obvious way to avoid such

phenomena is by modifying the agents’ utility functions to be “aligned” with the world utility

. This can be done via punitive legislation. A real world example of an attempt to do this

was the creation of anti-trust regulations designed to prevent monopolistic practices.1

We do not insist that the agents in a collective really are “trying” to maximize their

1In conventional economics, imposing governmental regulations is viewed as a change in the dynamical

laws of the variables constituting the world (e.g., now if you perform the proscribed action A you go to jail,

whereas that wasn’t the case before). Here instead it is abstracted to be a direct change in the mapping

between the state of the world and the agent’s utility value, without any change in underlying dynamical laws.

(To continue with the example, in this alternative there is no direct introduction of a new variable having to

do with some physical jail — rather your utility function is directly changed so that now if you do A, your

utility value is smaller than if you do not do A.)
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private utilities, in some teleological sense. We only require only that they can be viewed that

way. This allows us to circumvent the fraught exercise of formulating a definition of what

an arbitrary component of some physical system is “trying to do”. This is illustrated with

another naturally occurring example of a collective: a spin glass. One can take the agents in

such a glass to be the individual spins. Each spin’s “private utility” is (the negative of) its

local Hamiltonian (which is determined only by the states of the other spins to which it is

coupled). The “world utility” is (the negative of) the Hamiltonian of the entire system. In

this example, both the world utility and all of the private utilities are at (local) maxima at

equilibrium. This is what allows us to view the spins as though they were agents trying to

maximize their private utilities.

In addition to such naturally occurring examples, many current artificial systems can be

viewed as collectives. For example, the routers in a terrestrial telecommunications network

can be viewed as agents in a collective consisting of the entire network. Real-world routers

can reasonably be viewed as “trying to maximize” the quality of service accorded to the traffic

that crosses them. Hence they can be taken to be the collective’s agents. World utility in this

example can then be set to aggregate quality of service of the entire network.

With the advent of ubiquitous cheap computing in the near future, the number of artificial

control systems that are collectives should explode. Two obvious examples here are a user’s

constellation of multiple wearable computers, and “computational clouds” of computationally

enabled household devices. If such distributed systems are not to be extremely brittle, then

absent centralized communication and control, the individual components of the system will

need to be both autonomous and adaptive. Almost by definition, this means that those

components will be using statistical and machine learning techniques of some sort to modify

their behavior to try to meet a goal, i.e., to maximize their private utility.2. Moreover, in

both of these examples, there is an obvious choice of world utility: the satisfaction level of

the user(s) of the system.

Other more prosaic examples of artificial collectives will be dynamic job migration and/or

data migration across heterogenous networks of computers. World utility here will be aggre-

gate satisfaction of the network’s users, suitably quantified. As with our previous examples,

with centralized control being impractical, for the system to be robust there will have to be

adaptive “agents” in the system that can be viewed as trying to maximize associated private

utilities. As examples, the individual agents could be the computers in the network, or even

the jobs and/or sets of data themselves. Similarly, as soon as associated computational con-

trol devices are distributed across such systems, many aspects of the management of supply

chain, of electric power grid management, of automobile traffic control and automated control

of constellations of deployable autonomous vehicles will constitute collectives.

Another broad class of artificial collectives is essentially every system that will involve

copious amounts of nanotechnology where many of the nano-scale components in the system

have non-trivial associated computational capabilities. This may include everything from

continuously deformable wings to smart paint to nano-scale information storage and retrieval

systems.

Finally, consider search algorithms that try to find the value of a high-dimensional variable

~z for which a pre-specified function f has a large value. Examples of such algorithms are

2When used for this purpose, such techniques are either explicitly or implicitly related to the field Rein-

forcement Learning (RL) [15, 25, 24, 29, 2, 7, 11, 16, 21])
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gradient ascent, simulated annealing, genetic algorithms, etc. Say we take the final value of

f achieved by such an algorithm to be the “world utility” of the entire system’s dynamic

history. Assuming each individual component of ~z evolves with the “goal” of maximizing that

final value of f(~z), we can view each such component as an agent, with private utility given

by the final value of f . (Note that the private utility of an agent depends on variables not

directly under the agent’s control, in general.) In this way any search algorithm can be viewed

as a collective. However conventionally such algorithms use very “dumb” agents (e.g., semi-

random agents rather than RL-based agents). They also don’t consider possible modifications

to the underlying system, e.g., to the choice of private utilities, that might result in a better

value of final value of f . (The design problem of how best to set private utilities is discussed

in the next section.) Constructing search algorithms that use techniques of this nature —

intuitively, “agentizing” the individual variables of a search problem by providing them with

adaptive intelligence — would provide a search algorithm that is immediately parallelizable.

Owing to their use of “smart” variables, such algorithms might also lead to substantially

better final values of f than conventional search algorithms.

1.2 The Design of Collectives

The “forward problem” in the science of collectives is how the precise configuration of the

system — including in particular the private utilities of the agents — affects the ensuing

behavior, and therefore affects the value of the world utility. In light of the examples above

however, there is another problem that is at least as rich scientifically, but as a practical matter

is of more immediate concern. This is the inverse problem: How should one initialize/update

the private utility functions of the individual agents so that the ensuing behavior of the entire

collective achieves large values of the provided world utility? In particular, since in truly large

systems detailed modeling of the system is usually impossible, how can we solve this problem

in a way that avoids such modeling? Can we somehow solve it if we leverage only the simple

assumption that our agents’ learnering algorithms are individually fairly good at what they

do?

This design problem is related to work in many other fields, including multi-agent systems

(MAS’s), computational economics, mechanism design, reinforcement learning, statistical me-

chanics, computational ecologies, (partially observable) Markov decision processes and game

theory. However none of these fields is both applicable in large problems, and directly ad-

dresses the general inverse problem, rather than a special instance of it. (See [37] for a detailed

discussion of the relationship between these fields, involving hundreds of references.)

For example, the subfield of game-theory known as mechanism design might, at first glance,

appear to provide us techniques for solving the inverse problem. However mechanism design

is almost exclusively concerned with collectives that are at (a suitable refinement of) Nash

equilibrium [9, 20, 19]. That means that every agent is assumed to be performing as well as is

theoretically possible, given the behavior of the rest of the system. In setting private utilities

and the like on this basis, mechanism design ignores completely the issue of how to design

the system so that each of the agents can achieve a good value of its private utility (given the

behavior of the rest of the system). In particular it ignores all statistical issues related to how

well the agents can be expected to perform for various candidate private utilities. Such issues

become crucial as one moves to large systems, where each agent is implicitly confronted with
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a very high-dimensional RL task.

There are many other issues that arise in bounded rational situations that are not consid-

ered by mechanism design since they do not arise when there is full rationality. For example,

it is often the case that by “stabilizing” the sequence of actions of some agent ρ the other

agents, being in a more predictable environment, are able to perform better. Conversely, such

enforced stabilization of its actions will often hurt the performance of agent ρ. Mechanism de-

sign almost completely ignores the associated issues of how best to trade off the performance

of one agent against that of other agents, or more generally of how best to trade off the degree

of rationality of one agent against that of another agent. (Indeed, mechanism design does not

even possess a broadly applicable model-independent measure of “degree of rationality”.)

In addition to these problems, many of the techniques derived in mechanism design cannot

be applied in numerous application domains, since those techniques are largely tailored to

collectives of human beings. In particular, many of those techniques are tailored to the

idiosyncracy of such collectives that their members have hidden variables whose values they

“do not want to reveal”. This idiosyncracy is reflected in restrictions on the allowed form of

the private utilities and the world utility and communication structures among the agents.

Indeed, if there were no such restriction, then given the Nash equilibrium presumption of

mechanism design, how best to set the private utilities would be a trivial problem: To have

the maximum of world utility be a Nash equilibrium, simply set each such private utility to

equal the world utility, in a so-called “team game” or an “exact potential game” [8]. To have

the analysis be non-trivial, restrictions like those that apply to the private utilities of human

beings are needed.

Not only are the techniques of mechanism design not relevant to many domains, because

those domains do not have the restrictions assumed in mechanism design, but in addition

there are many issues that loom large in such domains about which mechanism design is

mute. For example, in computational domains, where the agents are computer programs each

controlling a set of certain variables, we often have some freedom to change how the set of

all variables being controlled is partitioned among the agents, and even change the number

of such agents. Needless to say, with its focus on human agents, mechanism design has little

advice to provide on such issues of how best to define the agents in the first place.

Perhaps the most striking illustration of the shortcoming of mechanism design is the fact

that it does not allow for run-time adaptive redesign. For real-world bounded rational agents,

the initial design of the system necessarily makes assumptions which invariably are at least

partially at variance with reality. To address this, one must employ adaptive techniques

(e.g., statistical estimation) on the running system to refine one’s initial assumptions, and

then modify the design accordingly. Yet almost all of mechanism design has no room for

addressing such “macro-learning”.

There is other previous work that does consider the inverse problem in its broadest sense,

and even has each agent explicitly use RL techniques, so that no formal assumption is made

in the associated theory that the system is at Nash equilibrium. Despite this use of RL

though, in general in that work the private utilities are set as in a team game. So again,

there is no concern for how well the agents can discern how best to act to maximize their

utilities. Unfortunately, as intimated above (and expounded below), ignoring this issue means

that the approach scales extremely poorly to large problems. Intuitively, the difficulty is that

each agent will have a hard time discerning the echo of its behavior on its private utility
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when the system is large if that private utility is the world utility; each agent has a horrible

“signal-to-noise” problem in such a situation.3

Intuitively, in designing the private utilities of a collective we want them to be “aligned”

with the world utility, in that modifications an agent might make that would increase its

private utility also must increase world utility. Fortunately the equivalence class of such

private utilities extends well beyond team-game utilities. In particular, it extends to include

utilities that have far better “signal-to-noise” properties. By using those utilities one can get

far better values of world utility than would otherwise be possible. The mathematical theory

for how to generate such alternative private utilities is presented in the next section. The

following, last section of this chapter then summarizes many experiments that demonstrate

that by using those alternative private utilities one can improve performance by up to orders

of magnitude, and that the gain in performance grows as the system gets larger.

2 The Mathematics of Designing Collectives

In this chapter attention is restricted to collectives in which the individual agents are pre-

fixed, being the players in multi-stage non-cooperative games, with their moves at any single

stage in no a priori way restricted by their moves at other times or by the moves of the

other players. Some techniques for the design of the private utilities in such games are known

as the “COllective INtelligence (COIN)” framework.[38] This section presents some of the

mathematics necessary to understand that framework. It should be emphasized however that

the full mathematics of how to design collectives extends significantly beyond what is needed

to address such games. 4

The restricted version of that full mathematics needed to present the COIN framework

starts with an arbitrary vector space Z whose elements ζ give the joint move of all players in

the collective in some stage. We wish to search for the ζ that maximizes the provided world

utility G(ζ). In addition to G we are concerned with private utility functions {gη}, one such

function for each variable/player η. We use the notation η̂ to refer to all players other than

η.

We will need to have a way to “standardize” utility functions so that the numeric value

they assign to a ζ only reflects their ranking of ζ relative to certain other elements of Z. We

call such a standardization of some arbitrary utility U for player η the “intelligence for η at

ζ with respect to U”. Here we will use intelligences that are equivalent to percentiles:

εη,U (ζ) ≡

∫

dµζ η̂
(ζ ′)Θ[U(ζ)− U(ζ ′)] , (1)

where the Heaviside function Θ is defined to equal 1 when its argument is greater than or

3To help see this, consider the example of a collective provided by the human economy. A team game

in that example would mean that every human gets US GDP as its reward signal, and tries to discern how

best to act to maximize that reward signal. At the risk of understatement, this would provide the individual

members of the economy with a difficult reinforcement learning task.
4That framework encompasses, for example, arbitrary dynamic redefinitions of the “players” (i.e., dynamic

reassignments of how the various subsets of the variables comprising the collective across all space and time are

assigned to players), as well as modification of the players’ information sets (i.e., modification of inter-player

communication). See [33].
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equal to 0, and to equal 0 otherwise, and where the subscript on the (normalized) measure

dµ indicates it is restricted to ζ ′ sharing the same non-η components as ζ.5 Intelligence value

are always between 0 and 1.

Our uncertainty concerning the behavior of the system is reflected in a probability dis-

tribution over Z. Our ability to control the system consists of setting the value of some

characteristic of the collective, e.g., setting the private utility functions of the players. Indi-

cating that value of the global coordinate by s, our analysis revolves around the following

central equation for P (G | s), which follows from Bayes’ theorem:

P (G | s) =

∫

d~εGP (G | ~εG, s)

∫

d~εgP (~εG | ~εg, s)P (~εg | s) , (2)

where ~εg ≡ (εη1,gη1
(ζ), εη2,gη2

(ζ), · · ·) is the vector of the intelligences of the players with

respect to their associated private utility functions, and ~εG ≡ (εη1,G(ζ), εη2,G(ζ), · · ·) is the

vector of the intelligences of the players with respect to G.

Note that εη,gη (ζ) = 1 means that player η is fully rational at ζ, in that its move max-

imizes the value of its utility, given the moves of the players. In other words, a point ζ

where εη,gη (ζ) = 1 for all players η is one that meets the definition of a game-theory Nash

equilibrium.6 On the other hand, a ζ at which all components of ~εG = 1 is a local maximum

of G (or more precisely, a critical point of the G(ζ) surface). So if we can get these two vectors

to be identical, then if the agents do well enough at maximizing their private utilities we are

assured we will be near a local maximum of G.

To formalize this, consider our decomposition of P (G | s). If we can choose s so that the

third conditional probability in the integrand is peaked around vectors ~εg all of whose compo-

nents are close to 1, then we have likely induced large (private utility function) intelligences.

If we can also have the second term be peaked about ~εG equal to ~εg, then ~εG will also be

large. Finally, if the first term in the integrand is peaked about high G when ~εG is large, then

our choice of s will likely result in high G, as desired.

Intuitively, the requirement that private utility functions have high “signal-to-noise” arises

in the third term. It is in the second term that the requirement that the private utility

functions be “aligned with G” arises. In this chapter we concentrate on these two terms, and

show how to simultaneously set them to have the desired form. 7

Details of the stochastic environment in which the collective operates, together with details

of the learning algorithms of the players, are all bundled into the distribution P (ζ) which

5The measure must reflect the type of system at hand, e.g., whether Z is countable or not, and if not,

what coordinate system is being used. Other than that, any convenient choice of measure may be used and

the theorems will still hold.
6See [9]. Note that consideration of points ζ at which not all intelligences equal 1 provides the basis for a

model-independent formalization of bounded rationality game theory. This formalization contains variants of

many of the theorems of conventional full-rationality game theory. See [32].
7Search algorithms that do not involve game theory (e.g., simulated annealing) can be viewed as addressing

how to have term 1 have the desired form. They do this by trying to ensure that the particular local maximum

they find of the function they are searching has a high value of that function. This is the essence of why such

algorithms “trade off exploration and exploitation”. One can combine such term-1-based techniques with the

techniques presented in this paper. Intuitively, this amounts to “wrapping” a system using the private utilities

derived below in an outer loop that trades off exploration and exploitation. The resultant hybrid algorithm,

addressing all three terms, outperforms simulated annealing by over two orders of magnitude[34].
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Figure 1: Intelligence of agent η at state ζ for utility U is the actual joint move at hand. The

x-axis shows agent η’s alternative possible moves (all states ζ ′ having ζ’s values for the moves

of all players other than η.). The thick sections of the x-axis show the alternative moves that

η could have made that would have given η a worse value of the utility U . The fraction of the

full set of η’s possible moves that lies in those thick sections (which is 0.6 in this example) is

the intelligence of agent η at ζ for utility U , denoted by εη,U (ζ).

underlies the distributions appearing in Equation 2. Note though that independent of these

considerations, our desired form for the second term in Equation 2 is assured if we have chosen

private utilities such that ~εg equals ~εG exactly for all ζ. Such a system is said to be factored.

In game-theory parlance, the Nash equilibria of a factored collective are local maxima of G. In

addition to this desirable equilibrium behavior, factored collectives also automatically provide

appropriate off-equilibrium incentives to the players (an issue rarely considered in the game

theory / mechanism design literature).

As a trivial example, any “team game” in which all the private utility functions equal G

is factored [8, 17]. However team games often have very poor forms for term 3 in Equation 2,

forms which get progressively worse as the size of the collective grows. This is because for

such private utility functions each player η will usually confront a very poor “signal-to-noise”

ratio in trying to discern how its actions affect its utility gη = G, since so many other player’s

actions also affect G and therefore dilute η’s effect on its own private utility function.

We now focus on algorithms based on private utility functions {gη} that optimize the

signal/noise ratio reflected in the third term, subject to the requirement that the system be

factored. To understand how these algorithms work, say we are given an arbitrary function

f(ζη) over player η’s moves, two such moves ζη
1 and ζη

2, a utility U , a value s of the global

coordinate, and a move by all players other than η, ζ η̂. Define the associated learnability

by

Λf (U ; ζ η̂, s, ζη
1, ζη

2) ≡

√

[E(U ; ζ η̂, ζη
1)− E(U ; ζ η̂, ζη

2)]2
∫

dζη[f(ζη)V ar(U ; ζ η̂, ζη)]
. (3)

The expectation values in the numerator are formed by averaging over the training set of the

learning algorithm used by agent η, nη. Those two averages are evaluated according to the

two distributions P (U |nη)P (nη|ζ η̂, ζη
1) and P (U |nη)P (nη|ζ η̂, ζη

2), respectively. (That is the
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meaning of the semicolon notation.) Similarly the variance being averaged in the denominator

is over nη according to the distribution P (U |nη)P (nη|ζ η̂, ζη).

The denominator in Equation 3 reflects how sensitive U(ζ) is to changing ζ η̂. In contrast,

the numerator reflects how sensitive U(ζ) is to changing ζη. So the greater the learnability

of a private utility function gη, the more gη(ζ) depends only on the move of player η, i.e.,

the better the associated signal-to-noise ratio for η. Intuitively then, so long as it does not

come at the expense of decreasing the signal, increasing the signal-to-noise ratio specified in

the learnability will make it easier for η to achieve a large value of its intelligence. This can

be established formally: if appropriately scaled, g′η will result in better expected intelligence

for agent η than will gη whenever Λf (g
′

η; ζ η̂, s, ζη
1, ζη

2) > Λf (gη; ζ η̂, s, ζη
1, ζη

2) for all pairs

of moves ζη
1, ζη

2[33]. 8

It is possible to solve for the set of all private utilities that are factored with respect to a

particular world utility. Unfortunately, in general it is not possible for a collective both to be

factored and to have infinite learnability for all of its players. However consider difference

utilities, which are of the form

U(ζ) = β[G(ζ)− Γ(ζ η̂)] (4)

Any difference utility is factored [33]. In addition, under usually benign approximations,

Λf (U ; ζ η̂, s, ζη
1, ζη

2) is maximized over the of difference utilities for all pairs ζη
1, ζη

2 by choos-

ing

Γ(ζ η̂) = Ef (G(ζ) | ζ η̂, s) , (5)

up to an overall additive constant, where the expectation value is over ζη. We call the resultant

difference utility the Aristocrat utility (AU), loosely reflecting the fact that it measures the

difference between a player’s actual action and the average action. If each player η uses an

appropriately rescaled version of the associated AU as its private utility function, then we

have ensured good form for both terms 2 and 3 in Equation 2.

Using AU in practice is sometimes difficult, due to the need to evaluate the expectation

value. Fortunately there are other utility functions that, while being easier to evaluate than

AU, still are both factored and possess superior learnability to the team game utility, gη = G.

One such private utility function is theWonderful Life Utility (WLU). The WLU for player

η is parameterized by a pre-fixed clamping parameter CLη chosen from among η’s possible

moves:

WLUη ≡ G(ζ)−G(ζ η̂, CLη) . (6)

WLU is factored no matter what the choice of clamping parameter. Furthermore, while not

matching the high learnability of AU, WLU usually has far better learnability than does a

team game, and therefore (when appropriately scaled) results in better expected intelligence

[28, 39, 37, 41].

Figure 2 provides an example of clamping. As in that example, in many circumstances

there is a particular choice of clamping parameter for player η that is a “null” move for that
8In many RL algorithms, changing the scale of the utility is exactly equivalent to changing a “temperature”

parameter of the algorithm. Such temperatures have to usually be set via a search process. The result presented

here establishes that so long as g′
η
has higher learnability than does gη , the expected intelligence of g′η at the

associated optimal temperature will be higher than that of gη at its optimal temperature.
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Figure 2: This example shows the impact of the clamping operation on the joint state of a

four-player system where each player has three possible moves, each such move represented

by a three-dimensional unary vector. The first matrix represents the joint state of the system

ζ where player 1 has selected action 1, player 2 has selected action 3, player 3 has selected

action 1 and player 4 has selected move 2. The second matrix displays the effect of clamping

player 2’s action to the “null” vector (i.e., replacing ζη2
with ~0). The third matrix shows the

effect of instead clamping player 2’s move to the “average” action vector ~a = {.33, .33, .33},

which amounts to replacing that player’s move with the “illegal” move of fractionally taking

each possible move (ζη2
= ~a).

player, equivalent to removing that player from the system. (Hence the name of this private

utility function — cf. the Frank Capra movie.) For such a clamping parameter assigning the

associated WLU to η as its private utility function is closely related to the economics technique

of “endogenizing a player’s externalities”, for example with the Groves mechanism [18, 19, 9].

However it is usually the case that using WLU with a clamping parameter that is as close as

possible to the expected move defining AU results in far higher learnability than does clamping

to the null move. Such a WLU is roughly akin to a mean-field approximation to AU.9 For

example, in Fig. 2, if the probabilities of player 2 making each of its possible moves was 1/3,

then one would expect that a clamping parameter of ~a would be close to optimal. Accordingly,

in practice use of such an alternative WLU derived as a “mean-field approximation” to AU

almost always results in far better values of G than does the “endogenizing” WLU.

Intuitively, collectives having factored and highly learnable private utilities like AU and

WLU can be viewed as akin to well-run human companies. G is the “bottom line” of the

company, the players η are identified with the employees of that company, and the associated

gη given by the employees’ performance-based compensation packages. For example, for a

“factored company”, each employee’s compensation package contains incentives designed such

that the better the bottom line of the corporation, the greater the employee’s compensation.

As an example, the CEO of a company wishing to have the private utilities of the employees

be factored with G may give stock options to the employees. The net effect of this action is

to ensure that what is good for the employee is also good for the company. In addition, if

the compensation packages are “highly learnable”, the employees will have a relatively easy

time discerning the relationship between their behavior and their compensation. In such a

case the employees will both have the incentive to help the company and be able to determine

how best to do so. Note that in practice, providing stock options is usually more effective

9Formally, our approximation is exact only if the expected value of G equals G evaluated at the expected

joint move (both expectations being conditioned on given moves by all players other than η). In general

though, for relatively smooth G, we would expect such a mean-field approximation to AU, to give good

results, even if the approximation does not hold exactly.
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in small companies than in large ones. This makes perfect sense in terms of the formalism

summarized above, since such options generally have higher learnability in small companies

than they do in large companies, in which each employee has a hard time seeing how his/her

moves affect the company’s stock price.

3 Tests of the Mathematics

As a test of the preceding mathematics, in some of our previous work we used the WLU for

distributed control of network packet routing [39]. Conventional approaches to packet routing

have each router run a shortest path algorithm (SPA), i.e., each router routes its packets in

the way that it expects will get those packets to their destinations most quickly. Unlike with

a WLU-based collective, with SPA-based routing the routers have no concern for the possible

deleterious side-effects of their routing decisions on the global goal (e.g., they have no concern

for whether they induce bottlenecks). We ran simulations that demonstrated that a WLU-

based collective has substantially better throughputs than does the best possible SPA-based

system [39], even though that SPA-based system has information denied the agents in the

WLU-based collective.

In related work we have shown that use of the WLU automatically avoids the infamous

Braess’ paradox, in which adding new links can actually decrease throughput — a situation

that readily ensnares SPA’s.[28, 36]

In yet other work we have applied the WLU to the problem of controlling communication

across a constellation of satellites so as minimize the importance-weighted loss of scientific

data flowing across that constellation.[35] Due to the novelty of this problem domain, we

first had to design a “baseline” distributed control algorithm, one that involves no learning.

To minimize the number of confounding distinctions between that baseline algorithm and the

collective-based algorithm we investigated, we had that collective “run on top” of the baseline

algorithm. The action of each agent in the collective was the determination of fictitious “ghost

traffic” that is presented to the baseline algorithm, thereby (hopefully) inducing that baseline

algorithm to achieve an even better value of the world utility. (Note that this idea can be

applied with most any baseline algorithm and most any distributed RL algorithm.) Again, we

achieved a significant increase in performance, in this case relative to the baseline algorithm.

We have also successfully applied the COIN techniques to problems that are explicitly

cast as search. These include setting the states of the spins in a spin glass to minimize

energy; the conventional bin-packing problem of computer science, and a model of human

agents connected in a small-world network who have to synchronize their purchase decisions.

We have also successfully applied COIN techniques to the problem of coordinativing a set of

autonomous rovers so as to maximize the importance-weighted value of a set of locations they

visit.[27].

Finally, it is worth going into some detail our investigations of variants of congestion

games [40, 38, 41, 38], in particular of a more challenging variant of Arthur’s El Farol bar

attendance problem [1], sometimes also known as the “minority game” [6]. In this problem

the individual processes making up the collective are explicitly viewed as ‘players’ involved

in a non-cooperative game. Each player has to determine which night in the week to attend

a bar. The problem is set up so that if either too few people attend (boring evening) or too
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many people attend (crowded evening), the total enjoyment of the attending players drops.

Our goal is to design the private utility functions of the players so that the total enjoyment

across all nights is maximized. In this previous work we showed that use of the WLU can

result in performance orders of magnitude superior to that of team game utilities.

Arthur’s bar problem [1] can be viewed as a problem in designing collectives. Loosely

speaking, in this problem at each time step each player η decides whether to attend a bar

by predicting, based on its previous experience, whether the bar will be too crowded to be

“rewarding” at that time, as quantified by a utility function G. The selfish nature of the

players frustrates the global goal of maximizing G. This is because if most players think the

attendance will be low (and therefore choose to attend), the attendance will actually be high,

and vice-versa.

We variants of the bar problem we investigated were all of the following type: There are

N players, each picking one out of seven moves every week. Each variant of the game is

parameterized by ` ∈ {1, 2, 3, 4, 5, 6}. In a given variant, each move of an agent corresponds

to attending the bar on some particular subset of ` out of the seven nights of the current

week (i.e., given `, each possible move is an ‘attendance profile’ vertex of the 7-dimensional

unit hypercube having ` 1’s). In each week every player chooses a move. Then the associated

private utility values for each player are communicated to that player, and the process is

repeated. For simplicity, for each ` we chose the seven possible attendance profiles so that if

the moves are selected randomly uniformly, the expected resultant attendance profile across

all seven nights is also uniform. (For example, or ` = 2, those profiles are (1, 1, 0, 0, 0, 0, 0),

(0, 1, 1, 0, 0, 0, 0), etc.)

More formally, the world utility in any particular week is:

G(ζ) ≡

7
∑

k=1

φ(xk(ζ)) , (7)

where xk(ζ) is the total attendance on night k; ζη is η’s move in that week; φ(y) ≡ y exp (−y/c);

and c is a real-valued parameter. Our choice of φ(.) means that when either too few or too

many players attend some night in some week world utility G is low.

Since we wished to concentrate on the effects of the utilities rather than on the RL algo-

rithms that use them, we used (very) simple RL algorithms.10 We would expect that even

marginally more sophisticated RL algorithms would give better performance. In our algo-

rithm each player η had a 7-dimensional vector giving its estimates of the utility it would

receive for taking each possible move. At the beginning of each week, each η picked the night

to attend randomly, using a Boltzmann distribution over the seven components of η’s esti-

mated utilities vector. For simplicity, temperature did not decay in time. However to reflect

the fact that each player operated in a non-stationary environment, utility estimates were

formed using exponentially aged data: in any week t, the estimate η makes for the utility for

attending night i was a weighted average of all the utilities it has previously received when it

attended that night, with the weights given by an exponential function of how long ago each

such utility was. To form the players’ initial training set, we had an initial period in which

all moves by all players were chosen uniformly randomly, with no learning.

10On the other hand, to use algorithms so patently deficient that they have never even been considered

in the RL community — like the algorithms used in most of the bar problem literature — would seriously

interfere with our ability to interpret our experiments.
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In these experiments we found once again that use of highly learnable factored private

utilities resulted in vastly better performance than use of team game private utilities. Also

as usual, we found that the gain in performance grew as the problem grew, reaching orders

of magnitude once the system grew to consist of thousands of agents. We always found that

AU performed at least as well as WLU with clamping to 0, which is essentially identical to

the economics technique of “endogenizing externalities”. In addition though, for some choices

of `, we found that AU performed substantially better than did this alternative, as would be

expected based on the formalism presented above.

Finally, the central equation makes numerous other predictions that preliminary experi-

ments seem to bear out. Some of these predictions concern ways to modify the behavior of

the collective to try to optimize term 1 as well as terms 2 and 3. (The work in [35] can be

viewed as an initial investigation of this issue.) Other predictions are on how to modify a

factored private utility so that it is not perfectly factored any more, but has undergone such

a large gain in learnability that (as quantified in the central equation) overall performance

improves.[31] It is worth emphasizing that such beneficial modifications to private utilities are

prohibited by the starting premise of the field of mechanism design, that the private utilities

must exhibit “incentive compatibility”.

4 Conclusion

A collective is any multi-agent system in which each agent adaptively tries to maximize its own

un private utility, while at the same time there is an overall world utility rating the behavior of

the entire system. Collectives are quite common in the natural world, the canonical example

being any human organization. In addition, as computing becomes ubiquitous in artificial

systems, the number of such systems that constitute collectives will explode.

Associated with any collective is a design problem, of how to configure the system — and

in particular how to set the private utilities of the agents — to optimize the world utility.

This paper cursorily synopsizes some of the mathematical theory underpinning this design

problem. That theory has now been tested in many different experiments. As summarized

above, those tests have the theory have clearly validated it, often resulting in performance

up to orders of magnitude superior to traditional techniques from the fields of multi-agent

systems and economics/mechanism design. Intuitively, that superiority lies in the fact that

these alternative approaches completely ignore the issue of how an agent’s ability to maximize

a candidate private utility will vary with changes in that private utility. This issue is especially

crucial in large systems, in which each agent will face an extremely difficult “signal-to-noise”

term in discerning the effects of its actions on its utility unless that utility is carefully crafted.
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